Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Bis[μ_{3}-cis- N-(2-aminopropyl)- N^{\prime}-(2-carboxylatophenyl)oxamidato(3-)]-bis(2,2'-bipyridine)dichloridotetracopper(II) dihydrate

Yuan-Yuan Gu, Yan-Tuan Li,* Zhi-Yong Wu, Wei Sun and Man Jiang
Marine Drug and Food Institute, Ocean University of China, 266003 Qingdao, People's Republic of China
Correspondence e-mail: yantuanli@ouc.edu.cn

Received 22 December 2008
Accepted 20 January 2009
Online 7 February 2009
The title complex, bis $\left[\mu_{3}\right.$-cis- N-(2-aminopropyl)- N^{\prime}-(2-carbox-ylatophenyl)oxamidato(3-)]-1:2:4 $\kappa^{7} N, N^{\prime}, N^{\prime \prime}, O: O^{\prime}, O^{\prime \prime}: O^{\prime \prime \prime} ;$;2:3:4 $: \kappa^{7} O^{\prime \prime \prime}: N, N^{\prime}, N^{\prime \prime}, O: O^{\prime}, O^{\prime \prime}$-bis($2,2^{\prime}$-bipyridine) $-2 \kappa^{2} N, N^{\prime} ; 4 \kappa^{2} N, N^{\prime}$ -dichlorido-1 $\mathrm{KCl}, 3 \kappa \mathrm{Kl}$-tetracopper(II) dihydrate, $\left[\mathrm{Cu}_{4}\left(\mathrm{C}_{12} \mathrm{H}_{12}{ }^{-}\right.\right.$ $\left.\left.\mathrm{N}_{3} \mathrm{O}_{4}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, consists of a neutral cyclic tetracopper(II) system having an embedded centre of inversion and two solvent water molecules. The coordination of each $\mathrm{Cu}^{\text {II }}$ atom is square-pyramidal. The separations of $\mathrm{Cu}^{\mathrm{II}}$ atoms bridged by cis- N-(2-aminopropyl)- N^{\prime}-(2-carboxylato-phenyl)oxamidate(3-) and carboxyl groups are 5.2096 (4) and 5.1961 (5) Å, respectively. A three-dimensional supramolecular structure involving hydrogen bonding and aromatic stacking is observed.

Comment

It is known that N, N^{\prime}-bis(substituted)oxamides could be good candidates in forming polynuclear complexes because their coordinating ability toward transition metal ions can be modified and tuned by changing the nature of the amide substituents (Ojima \& Nonoyama, 1988). A typical feature of these ligands is an easy transformation of cis-trans conformations, which makes it practical to design tunable molecular materials with desired properties (Ruiz et al., 1999). To date, many polynuclear complexes containing oxamide bridges have been synthesized and their properties have been studied extensively (Messori et al., 2003; Wang et al., 2004). Compared with studies dealing with symmetrical N, N^{\prime}-bis(substituted)oxamide polynuclear systems, relatively few studies dealing with dissymmetrical N, N^{\prime}-bis(substituted)oxamide polynuclear complexes have been reported, owing to difficulties in their synthesis (Matović et al., 2005; Zang et al., 2003). However, the fact that those complexes bridged by dissymmetrical N, N^{\prime}-bis(substituted)oxamides have shown
predominant properties (Costes et al., 2000; Erxleben, 2001; Larionova et al., 1997; Pei et al., 1989, 1991) stimulated us to design and synthesize new polynuclear complexes with dissymmetrical N, N^{\prime}-bis(substituted)oxamides to explore their special structures and functionalities. In continuation of our earlier work (Li et al., 2003, 2004; Liu et al., 2008), we synthesized a novel tetranuclear copper(II) complex bridged by the asymmetrical oxamide ligand cis- N -(2-aminopropyl)-N^{\prime}-(2-carboxylatophenyl)oxamidate (3-) (oxbm ${ }^{3-}$) and endcapped with $2,2^{\prime}$-bipyridine (bpy), namely $\left[\mathrm{Cu}_{4}(\mathrm{oxbm})_{2^{-}}\right.$ $\left.\mathrm{Cl}_{2}(\text { bpy })_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (I), and report the crystal structure here.

(I)

A perspective view of complex (I) is depicted in Fig. 1, and selected bond lengths and angles are listed in Table 1. As shown in Fig. 1, the asymmetric unit can be considered as a cis-oxamide-bridged dinuclear copper(II) complex linked with a solvent water molecule by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond, viz. $\left[\mathrm{Cu}_{2}\right.$ (oxbm) $\mathrm{Cl}($ bpy $\left.)\right] \cdot \mathrm{H}_{2} \mathrm{O}$. Through carboxyl bridges, a pair of units assemble to form a circular tetranuclear system with inversion symmetry. The cis-oxamide group coordinates to

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. For clarity, the atoms of the asymmetric residue unit and its counterpart are represented in different styles, and the bonds of $\mathrm{C} 12 B$ are depicted with open lines. Dashed lines indicate hydrogen bonds. [Symmetry code: (i) $-x+1,-y$, $-z+1$.]
atoms Cu 1 and Cu 2 in the usual chelating mode, with bite angles of 83.40 (9) and $85.23(8)^{\circ}$, respectively. The carboxylate group bridges Cu atoms in a nonplanar skew-skew fashion. The $\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$ and $\mathrm{Cu} 2^{\mathrm{i}}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$ torsion angles [symmetry code: (i) $-x+1,-y,-z+1$; Table 1] are similar to those found in other complexes with skew-skew carboxyl bridges (Duan et al., 2006; Tong et al., 1997). The $\mathrm{Cu} \cdots \mathrm{Cu}$ separations through the oxamide and carboxylate bridges are 5.2096 (4) and 5.1961 (5) A, respectively. To date, seven cyclic tetranuclear complexes with symmetrical oxamide

Figure 2
A view of the two-dimensional hydrogen-bonding structure of (I). Hydrogen bonds are shown as dotted lines and H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (ii) $-x+2,-y,-z+1$; (iii) $-x+1,-y+1,-z$.]

Figure 3
A view showing the $\pi-\pi$ stacking interactions along the c axis, viewed perpendicular to the pyridine plane. H atoms and water molecules have been omitted for clarity. [Symmetry code: (iv) $x, y, z-1$.]
bridges have been synthesized and structurally characterized (Abbati et al., 1999; Li et al., 2008; Ribas et al., 1998; Zhu et al., 2007). However, the title complex is the first instance of a dissymmetrical oxamide.

Atoms Cu 1 and Cu 2 are both in square-pyramidal coordination geometries, with τ values of 0.08 and 0.03 (Addison et al., 1984), respectively. Atom Cu 1 resides in an inner site of the cis-oxbm ${ }^{3-}$ ligand; the basal plane is defined by atoms $\mathrm{N} 1, \mathrm{~N} 2$, N 3 and O 1 , and the maximum displacement from the leastsquares plane is $0.1073(15) \AA$ for N 2 , the displacement of atom Cu 1 being 0.2403 (13) \AA. The apical position is occupied by atom Cl 1 . Atom Cu 2 coordinates to the exo-cis O atoms of the oxbm ${ }^{3-}$ ligand (O3 and O4), and the N atoms (N4 and N5) of the bpy ligand complete the basal plane, from which the maximum deviation is 0.0190 (12) \AA (N4). The apical site is occupied by a carboxyl O atom $\left(\mathrm{O}_{2}{ }^{\mathrm{i}}\right)$. Atom Cu 2 is pulled 0.2101 (12) \AA out of the basal plane by the apical $\mathrm{O}^{1}{ }^{\mathrm{i}}$ atom.

The oxbm ${ }^{3-}$ ligand chelates atom Cu 1 to form two fivemembered and one six-membered chelate ring. One of the five-membered rings is planar, and the other has an envelope conformation puckered on the chiral C 11 atom, the puckering parameters (Cremer \& Pople, 1975) being $Q=0.399$ (3) A and $\varphi=114.2(4)^{\circ}$. The six-membered ring adopts a boat conformation, with puckering parameters $Q=0.304(3) \AA, \theta=$ $87.9(6)^{\circ}$ and $\varphi=300.8(5)^{\circ}$. The $\mathrm{Cu} 1-\mathrm{N} 1$ and $\mathrm{Cu} 1-\mathrm{N} 2$ bonds are shorter than the $\mathrm{Cu} 1-\mathrm{N} 3$ bond (Table 1), which is consistent with the stronger donor ability of the deprotonated amide N atom compared with the primary amine N atom (Jubert et al., 2002).

In the crystal structure, neutral tetranuclear complexes and solvent water molecules are connected by classical hydrogen bonds into a one-dimensional chain parallel to the a axis (Table 2). The chains are linked through nonclassical $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds into a two-dimensional hydrogenbonding network extending along the (011) plane (Fig. 2). Moreover, offset $\pi-\pi$ stacking is observed between the pyridine ring containing atom N 4 and the benzene ring of a neighbouring complex, the nearest separation being 3.421 (4) \AA for atom $\mathrm{C}^{\text {iv }}$ [symmetry code: (iv) $x, y, z-1$; Fig. 3]. The stackings dominate the interactions between the hydrogen-bonded layers and hold them together to create a three-dimensional supramolecular structure.

Experimental

All reagents were of analytical reagent grade and were used without further purification. A methanol (5 ml) solution of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($0.0085 \mathrm{~g}, 0.05 \mathrm{mmol}$) was added dropwise to an aqueous solution $(5 \mathrm{ml})$ of $\mathrm{Na}[\mathrm{Cu}(0 x b m)](0.0349 \mathrm{~g}, 0.1 \mathrm{mmol})$, prepared according to the method described by Tao et al. (2003), with continuous stirring. The mixture was stirred quickly for an hour and then a solution of 2,2'-bipyridine ($0.0078 \mathrm{~g}, 0.05 \mathrm{mmol}$) in methanol (5 ml) was added dropwise. The resulting solution was stirred at 333 K for 6 h , filtered and the filtrate allowed to stand at room temperature for one week to give well shaped green crystals suitable for X -ray analysis (yield 72%). Elemental analysis calculated for $\mathrm{C}_{44} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{Cu}_{4} \mathrm{~N}_{10} \mathrm{O}_{10}$: C 44.11, H 3.70, N 11.69%; found: C 44.31, H 3.78, N 11.71%.

Crystal data

$\left[\mathrm{Cu}_{4}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4}\right)_{2} \mathrm{Cl}_{2}-\right.$	$\beta=69.842(1)^{\circ}$
$\left.\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$\gamma=72.688(1)^{\circ}$
$M_{r}=1197.95$	$V=1169.57(3) \AA^{3}$
Triclinic, $P \overline{1}$	$Z=1$
$a=10.9622(1) \AA$	Mo $K \alpha$ radiation
$b=11.1330(2) \AA$	$\mu=1.98 \mathrm{~mm}^{-1}$
$c=11.2876(2) \AA$	$T=298(2) \mathrm{K}$
$\alpha=67.072(1)^{\circ}$	$0.28 \times 0.22 \times 0.17 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2008b) $T_{\text {min }}=0.607, T_{\text {max }}=0.730$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
3 restraints
H -atom parameters constrained
$\Delta \rho_{\max }=0.98$ e \AA^{-3}
$\Delta \rho_{\min }=-0.78 \mathrm{e}^{-3}$
$S=1.04$
5441 reflections
328 parameters

16602 measured reflections
5441 independent reflections
4353 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$

Table 1
Selected geometric parameters $\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.6832(10)$	$\mathrm{Cu} 2-\mathrm{N} 4$	$1.961(2)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.988(2)$	$\mathrm{Cu} 2-\mathrm{N} 5$	$2.000(3)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.925(2)$	$\mathrm{Cu} 2-\mathrm{O} 2^{\mathrm{i}}$	$2.276(2)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$2.035(2)$	$\mathrm{Cu} 2-\mathrm{O} 3$	$1.9586(19)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9188(19)$	$\mathrm{Cu} 2-\mathrm{O} 4$	$1.9430(19)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$83.40(9)$	$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O} 4$	$85.23(8)$
$\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	$155.8(2)$	$\mathrm{Cu} 2^{\mathrm{i}}-\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$-103.9(3)$

Symmetry code: (i) $-x+1,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\left(\AA{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O5-H5A $\cdots \mathrm{Cl} 1$	0.92	2.47	$3.335(3)$	159
O5-H5B $\cdots \mathrm{O}^{\mathrm{ii}}$	0.81	2.07	$2.870(3)$	168
N3-H3B $\cdots \mathrm{Cl}^{\text {ii }}$	0.90	2.55	$3.406(2)$	158
N3-H3A $\cdots \mathrm{O}^{1 i}$	0.90	2.44	$3.172(3)$	138
C16-H16 $\cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.93	2.70	$3.549(4)$	152

Symmetry codes: (ii) $-x+2,-y,-z+1$; (iii) $-x+1,-y+1,-z$.

The methyl group was disordered over two positions, C12A and C12B, whose occupancy factors were refined and then fixed at 0.7 and 0.3 , respectively. The $\mathrm{C} 11-\mathrm{C} 12 B$ bond length was restrained to a reasonable $\mathrm{C}-\mathrm{C}$ value $[1.456$ (7) \AA A], and similarity restraints with a standard uncertainty of $0.01 \AA$ were applied to the $\mathrm{C} 10 \cdots \mathrm{C} 12 A$ and $\mathrm{C} 10 \cdots \mathrm{C} 12 B$ distances as well as to the $\mathrm{N} 3 \cdots \mathrm{C} 12 A$ and $\mathrm{N} 3 \cdots \mathrm{C} 12 B$ distances. Water H atoms were found in a difference Fourier map and were treated as riding, with fixed $U_{\text {iso }}(\mathrm{H})$ values of $0.08 \AA^{2}$. The remaining H atoms were placed in calculated positions, with $\mathrm{N}-\mathrm{H}=$ $0.90 \AA$ and $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.96 (methyl), 0.97 (methylene) or $0.98 \AA$ (methine), and refined in riding mode, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: XP (Siemens, 1994) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (grant No. 30672515) and the PhD Program Foundation of the Ministry of Education of China (grant No. 20060423005).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3285). Services for accessing these data are described at the back of the journal.

References

Abbati, G. L., Cornia, A. \& Fabretti, A. C. (1999). Acta Cryst. C55, $2043-$ 2045.

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Bruker (2002). SAINT (Version 6.02) and SMART (Version 5.62). Bruker AXS Inc., Madison, Wisconsin, USA.
Costes, J.-P., Dahan, F., Dupuis, A. \& Laurent, J.-P. (2000). Inorg. Chem. 39, 169-173.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Duan, L.-M., Xie, F.-T., Chen, X.-M., Chen, Y., Lu, Y.-K., Cheng, P. \& Xu, J.-Q. (2006). Cryst. Growth Des. 6, 1101-1106.

Erxleben, A. (2001). Inorg. Chem. 40, 208-213.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Jubert, C., Mohamadou, A., Gërard, C., Brandes, S., Tabard, A. \& Barbier, J. P. (2002). J. Chem. Soc. Dalton Trans. pp. 2660-2669.

Larionova, J., Chavan, S. A., Yakhmi, J. V., Froystein, A. G., Sletten, J., Sourisseau, C. \& Kahn, O. (1997). Inorg. Chem. 36, 6374-6381.
Li, X.-Z., Zhu, L.-N. \& Liao, D.-Z. (2008). Inorg. Chim. Acta, 361, 14691478.

Li, Y.-T., Yan, C.-W. \& Guan, H.-S. (2004). Synth. Met. 144, 69-73.
Li, Y.-T., Yan, C.-W. \& Zhang, J. (2003). Cryst. Growth Des. 3, 481-485.
Liu, J.-L., Yan, C.-W., Li, Y.-T., Wu, Z.-Y. \& Zhang, W.-J. (2008). Acta Cryst. C64, m149-m152.
Matović, Z. D., Miletić, V. D., Samardžić, G., Pelosi, G., Ianelli, S. \& Trifunović, S. (2005). Inorg. Chim. Acta, 358, 3135-3144.

Messori, L., Shaw, J., Camalli, M., Mura, P. \& Marcon, G. (2003). Inorg. Chem. 42, 6166-6168.
Ojima, H. \& Nonoyama, K. (1988). Coord. Chem. Rev. 92, 85-111.
Pei, Y., Kahn, O., Nakatani, K., Codjovi, E., Mathonière, C. \& Sletten, J. (1991). J. Am. Chem. Soc. 113, 6558-6564.

Pei, Y., Nakatani, K., Kahn, O., Sletten, J. \& Renard, J. P. (1989). Inorg. Chem. 28, 3170-3175.
Ribas, J., Diaz, C., Costa, R., Tercero, J., Solans, X., Font-Bardía, M. \& Stoeckli-Evans, H. (1998). Inorg. Chem. 37, 233-239.
Ruiz, R., Faus, J., Lloret, F., Julve, M. \& Journaux, Y. (1999). Coord. Chem. Rev. 193-195, 1069-1117.
Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tao, R.-J., Zang, S.-Q., Mei, C.-Z., Wang, Q.-L., Lou, B.-Y., Niu, J.-Y., Cheng, Y.-X. \& Liao, D.-Z. (2003). J. Cluster Sci. 14, 459-469.

Tong, Y.-X., Chen, X.-M. \& Ng, S. W. (1997). Polyhedron, 16, 3363-3369.
Wang, S.-B., Yang, G.-M., Liao, D.-Z. \& Li, L.-C. (2004). Inorg. Chem. 43, 852 854.

Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
Zang, S.-Q., Tao, R.-J., Wang, Q.-L., Hu, N.-H., Cheng, Y.-X., Niu, J.-Y. \& Liao, D.-Z. (2003). Inorg. Chem. 42, 761-766.

Zhu, L.-N., Xu, N., Zhang, W., Liao, D.-Z., Yoshimura, K., Mibu, K., Jiang, Z.-H., Yan, S.-P. \& Cheng, P. (2007). Inorg. Chem. 46, 1297-1304.

